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atomic reconstruction and vortex lattice formation; (2) 
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Example: Graphene on hBN

Woods et al, Nature Phys. 10, 451 (2014)Dean et al, Nature 497, 598 (2013) 

Chen & Qin, JPCC 8, 12085 (2020)

Graphene and hexagonal boron nitride (hBN)

have the same crystal structure but slightly

different interatomic distances (roughly, 0.142 nm

vs 0.145 nm). In hBN they are 1.8% larger



Phase locking (synchronization)

Oliveira & Melo, Sci Rep 2015

Discovered by Huygens, XVII century)

If  you have two coupled

oscillators with slightly 

different frequencies they 

can be synchronized

Bifurcation of  torus (with

two incommensurate 

frequencies) into limit circle

(with one common period)

Llibre et al, J. Dyn. Dif. Eq. (2018)

E.g., string pendulum, frequency

ratio close to 1:2



Misfit dislocations

Tang & Fu, Nature Phys. 10, 964 (2014)

Interface of  different semiconductors (e.g. PbTe/PbSe)

Energy of  interlayer interaction (second term) wants

that interatomic distances are equal but then one pays

for the energy of  elastic deformation (the first term)

Very roughly: When 𝑊 > 𝜇(𝑏 − 𝑎)2 then two layers will be mostly commensurate, and the whole

misfit will be concentrated via narrow ‘solitons’, and in the opposite limit the system will not even try

To reach synchronization of  periods, that is, commensurability

Commensurate – incommensurate transition is expected!



Commensurate-incommensurate 
transition

Moire patterns with periodicity 8 nm (left) and 

14 nm (right)

When misorientation angle (in radians) is

smaller with misfit,  synchronization happens

Atomistic simulations

Distribution of  bond length in 

commensurate (left) and 

incommensurate (right) regimes



Consequences for electronic structure

Relaxed structure (B green, C yellow, N red)

V corresponds to the minimal energy (max. 

cohesion)

B on the top of  C, N in the middle of  hexagon

Sublattices are no more equivalent → locally 

energy gap is open (mass term in Dirac eq.)



Consequences for electronic structure II
Atomic relaxation in commensurate phase

modulates the Hamiltonian parameters

Very strong effect of  atomic relaxation!

Optical conductivity



Consequences for electronic transport
In commensurate phase average gap is non zero, 

and system can be insulating

Woods et al, Nature Phys. 10, 451 (2014)

For incommensurate phase, the average gap is zero,

and there are electron states along zero-mass lines

(Tudorovskiy & MIK, PRB 86, 045419 (2012)

Model of  percolation along zero-mass lines

Landauer formula

Exact result for 2D percolation (Cardy)

Exact minimal conductivity

in percolation model



Optical second-harmonic generation
In commensurate phase inversion symmetry in broken due to nonequivalence of  sublattices →

second-harmonic generation (SHG) is allowed by symmetry

Electron-hole symmetry should be also

broken → either final doping or NNN

hopping t’

Contributions to nonlinear optical conductivity



Optical SHG II



Optical SHG III

b – incommensurate

phase, only hBN signal

is visible; 

d – commensurate, one

can see graphene 

Commensurate – incommensurate transition was induced by

ieating and clearly detected via SHG



Graphene on graphite
Atomistic simulations: graphene

on graphite

Periodicity of  moire structure



Graphene on graphite II



Twisted bilayer graphene

There is a modulation at small angles and some analog of  “incommensurability” 

(small modulations) at larger angles



Description in terms of dislocations
To reproduce vortex structure one can

try three families of  screw dislocations

Displacement field from individual 

dislocation is given by analytic formula

(Frenkel – Kontorova model)

dislocation core splitting



Description in terms of dislocations II



Description in terms of dislocations III

Pseudomagnetic fields

There is an analytic formula for pseudomagnetic field, quite cumbersome but explicit

Description in terms of  vortices is consistent with that in terms of  dislocations

For graphene at hBN one needs to add three families of  edge dislocations, due to lattice misfit



Large-scale TB simulations plus 
experiment

Atomic relaxation

effects are essential

Calculated distribution of  pseudomagnetic

field



Large-scale TB simulations plus 
experiment



Quasicrystals

Unrelaxed moire pattern is periodic if  with integer p and q

incommensurate (quasicrystal) structure

Contrary to conventional 3D quasicrystals graphene quasicrystals are easily tunable!

For so large misorientation angle atomic relaxation is negligible and we are always in

incommensurate phase 



Quasicrystals II
Using approximants to calculate electronic structure;

elementary cell is huge but doable via tight-binding propagation

method 

Bright features appear only far enough from

the conical point



Quasicrystals III

Landau levels (Hofstadter batterfly)

Uniaxial pressure moves the singularities closer

to the Fermi energy
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Conclusions

- Atomic relaxation is very important for small enough misorientation angles

- Twisted VdW heterostructures are model systems to study physics of  

commensurability and incommensurability in condensed matter

- Description in terms of  vortices, dislocations and other topological effects may be

very suitable

- Second-harmonic generation can be a sensitive experimental tool to study commensurate-

incommensurate transition



One more story: Fermi condensate
From Standard Model of particle physics to room-temperature 

superconductivity
G.E. Volovik

February 11, 2021



Second story: Van Hove scenario and flat band 
formation

Example: Van Hove filling and optimal doping in high-Tc

superconductors (also – pseudogap, etc.)
Irkhin, Katanin & MIK, PRB 64, 165107 (2001); PRL 89, 076401 (2002)

Near VHS:

When Fermi energy coincides with VHS: relevant vertices are divergent, 

opportunity of  non-Fermi- liquid behavior (Dzialoshinskii, 1987)



Van Hove scenario and flat band 
formation II

Particle-hole channel

Particle-particle channel

log divergent



Van Hove scenario and flat band 
formation III

Parquet summation of  divergent diagrams (Irkhin, Katanin, MIK 2001)

Competing channels of  instabilities

(FM, AFM, d-wave pairing) – mutual

suppression!

Phase diagram at Van Hove filling

Objection (P. W. Anderson): who cares on the theory working in

one point?

Almost exact solution for small enough U



Van Hove scenario and flat band 
formation IV

Perturbative RG treatment

If  one take into account

only renormalization of  dispersion

Looks like flat band formation

Damping is divergent, NFL!!!

Difference with “Fermi 

condensation” phenomenology,
Khodel & Shaginyan (1990)

Pinning Fermi energy to VHS



Triangular Lattice- VHS

Van Hove sinqularity at filling   n=2/3 



Dual fermion approach
Spectral Function

U=8

U=0

N(k)

Ladder DF approx.

The effect survives at relatively

high temperatures, may be suitable

for the observation in optical lattices

Microscopic realization of  the

fermion condensate



Experiment?!

ARPES evidence of band flattening?!

Theoretical spectral density (black)


