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Outline

Phase synchronization and commensurate — incommensurate
transition in general

Graphene on hBN: (1) atomic reconstruction; (2) effect on
electronic structure; (3) transport; (4) nonlinear optics

Graphene on graphite and/or twisted bilayer graphene: (1)
atomic reconstruction and vortex lattice formation; (2)
description in terms of misfit dislocations; (3) pseudomagnetic
field and electronic structure

Many-body effects at Van Hove filling in 2D systems: flat band
formation
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Chen & Qin, JPCC 8, 12085 (2020)

Graphene

Dean et al, Nature 497, 598 (2013)

Example: Graphene on hBN

Graphene and hexagonal boron nitride (hBN)
have the same crystal structure but slightly
different interatomic distances (roughly, 0.142 nm
vs 0.145 nm). In hBN they are 1.8% larger
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Figure 1| Schematic representation of the moiré pattern of graphene (red)
on hBN (blue). a Relative rotation angle between the crystals ¢ =0°.

b Relative rotation angle between the crystals ¢ =3°~ 0.052rad. The
mismatch between the lattices is exaggerated (~10%). Black hexagons
mark the moiré plaquette.

Woods et al, Nature Phys. 10, 451 (2014)



Phase locking (synchronization)

If you have two coupled
oscillators with slightly
different frequencies they
can be synchronized

] s

—

E.g, string pendulum, frequency
ratio close to 1:2

Bifurcation of torus (with
two Incommensurate
frequencies) into limit circle
(with one common period)
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Oliveira & Melo, Sci Rep 2015 Llibre et al, J. Dyn. Dif. Eq. (2018)




Misfit dislocations

One-dimensional dislocations. Interface of different semiconductors (e.g. PbTe/PbSe)
I. Static theory Ezqqzz:z .
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H. H. Wills Physical Laboratory, University of Bristol 1 !
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. . . Tang & Fu, Nature Phys. 10, 964 (2014
Energy of interlayer interaction (second term) wants s : 201

that interatomic distances are equal but then one pays
for the energy of elastic deformation (the first term)

Very roughly: When W > u(b — a)? then two layers will be mostly commensurate, and the whole
misfit will be concentrated via narrow ‘solitons’; and in the opposite limit the system will not even try
To reach synchronization of periods, that is, commensurability

Commensurate — incommensurate transition is expected!



Commensurate-incommensurate
transition

C
Commensurate-incommensurate transition in
graphene on hexagonal boron nitride

C.R. Woods, L. Britnell', A. Eckmann?, R. S. Ma®, J. C. Lu?, H. M. Guc®, X. Lin® G. L. Yu',
Y. Cao?, R. V. Gorbachev?, A. V. Kretinin', J. Park®, L. A. Ponomarenka', M. I. Katsnelson®,
Yu. N. Gornostyrev’, K. Watanabe®, T. Taniguchi®, C. Casiraghi?, H-). Gao®, A. K. Geim*
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Ll il NATURE PHYSICS Dol:101038/NPHYS2954

When misorientation angle (in radians) is
smaller with misfit, synchronization happens

Moire patterns with periodicity 8 nm (left) and

Atomistic simulations

PRL 113, 135504 (2014) PHYSICAL REVIEW LETTERS e g

26 SEPTEMBER 2014 200
Moiré Patterns as a Probe of Interplanar Interactions for Graphene on h-BN =
M. M. van Wijk, A. Schuring. M. I. Katsnelson, and A. Fasolino™ > 100
. . . . Y
Distribution of bond length in
commensurate (left) and

incommensurate (right) regimes
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Consequences for electronic structure

PHYSICAL REVIEW B 84, 195414 (2011) O i ’
A ,L
Adhesion and electronic structure of graphene on hexagonal boron nitride substrates ( a) 8 vg D)
‘ , v
B. Sachs,"” T. O. Wehling,":" M. L. Katsnelson,” and A. L. Lichtenstein' 1 . . m
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PRL 115, 186801 (2015)

Consequences for electronic structure |

PHYSICAL REVIEW LETTERS

week ending

30 OCTOBER 2015

DOS (1/1)

Effect of Structural Relaxation on the Electronic Structure
of Graphene on Hexagonal Boron Nitride

G.J. Slotman,' M. M. van Wijk.l Pei-Liang Zhao,> A. Fasolino,' M. I. Katsnelson," and Shengjun Yuan"
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FIG. 1 (color online).

right, the on-site potential » and the hopping parameters ;. 5, and 3. The color bars are in units of r = 2.7 eV.
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Very strong effect of atomic relaxation!

Atomic relaxation in commensurate phase
modulates the Hamiltonian parameters

=
o

1.02
1.0
0.98

The moditied TB parameters for a relaxed sample of graphene on hBN with ¢ = 0° (1 = 13.8 nm)

. From left to

0.1 0.2

0.3 04

w/t

Optical co

nductivity

0.5



Consequences for electronic transport

. a 10K b
In commensurate phase average gap is non zero, 20K s
and system can be insulatin ot
y g 100 1. 40K
50K ’:I.‘
60 K <
70K
For incommensurate phase, the average gap is zero, g o ‘|
. =8
and there are electron states along zero-mass lines oo —— 100K f\
(Tudorovskiy & MIK, PRB 86, 045419 (2012) e
Model of percolation along zero-mass lines
PRL 113, 096801 (2014) PHYSICAL REVIEW LETTERS 29 e 4 2 0 1

n(x10"em=2)

Metal-Insulator Transition in Graphene on Boron Nitride

Woods et al, Nature Phys. 10, 451 (2014)

e’
Landauer formula G = 7 (N gme>

M. Titov and M. I. Katsnelson

V3L,

Exact result for 2D percolation (Cardy) < Ny, €> — =)
'y

2
Exact minimal conductivity g — \/5 8_

in percolation model



Optical second-harmonic generation

In commensurate phase inversion symmetry in broken due to nonequivalence of sublattices —
second-harmonic generation (SHG) is allowed by symmetry

PHYSICAL REVIEW B 99, 165432 (2019)

Electron-hole symmetry should be also

Resonant optical second harmonic generation in graphene-based heterostructures bekal N either ﬁnal dOplﬂg or NNN
M. Vandelli,"* M. I. Katsnelson,"* and E. A. Stepanov'+* h : )
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FIG. 1. Dispersion relation of graphene with (solid line) and
without (dashed line) account for the next-nearest-neighbor hopping
process 1’. Red arrows show optical resonances at the bandwidth
(I" point), van Hove singularity (M point), and band gap (K point).

t=-28¢eV.t' = 0.1t m=30meV




40

20 ¢

0

Gr/SiC —
Gr/hBN —

Optical SHG Il

0 02 04 06 08 1.0

2 4 6 8 W

6X1O4f nyyy(w)

-

FIG. 3. The absolute value of 7, (w) for hBN (black line),

1 Gr/SiC (green line), and Gr/hBN (red line) at low (left) and high
1 (right) frequency . The data for Gr/SiC on the right panel is
| multiplied by a factor of 5 and data for Gr/hBN is multiplied by
15 x (mgyysic/marmen ). The data on the left panel 1s shown without
| the multiplication. Labels “1,” “2.” and “3” depict resonances on the
1 band gap, van Hove singularity, and the bandwidth, respectively. The
| frequency w of the applied light is given in units of eV.
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: i JL | the frequency of the applied light @ (in eV) for the case of Gr/SiC
0 = — —A—a——2~ under the effect of the magnetic field B=1T,2T,4T, and 6 T.
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Optical SHG Il

a

Direct Observation of Incommensurate—Commensurate Transition
in Graphene-hBN Heterostructures via Optical Second Harmonic
Generation

E. A. Stepanov,‘*":' S. V. Semin,” C. R. Woods, M. Vandelli, A. V. Kimel, K. S. Novoselov,
and M. 1. Katsnelson

Cite This: ACS Appl. Mater. Interfaces 2020, 12, 27758-27764 I:I Read Online

< b —incommensurate
= phase, only hBN signal
is visible;

Figure 1. Sketch of the experiment. Green and yellow hexagonal tiles
represent hBN and graphene, respectively. Red arrows depict the
incident 800 nm light. Blue arrows indicate the SHG response
collected at 400 nm from different parts of the sample. (a) In the
incommensurate phase, the inversion symmetry of graphene is not
broken, and the uniform signal of the SHG comes only from the hBN.
(b) After the structural phase transition to the commensurate state,
strong modification of the SHG response is observed from the
graphene area, where the inversion symmetry breaking is induced by
the aligned hBN substrate.

d — commensurate, one
can see graphene
Commensurate — incommensurate transition was induced by
ieating and clearly detected via SHG
<
=



Graphene on graphite

Relaxation of moiré patterns for slightly misaligned identical lattices:
graphene on graphite 2D Mater. 2 (2015) 034010

M M van Wijk, A Schuring, M I Katsnelson and A Fasolino

Atomistic simulations: graphene
on graphite
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Figure 2. The effects of relaxation are shown for a sample with (n, m) = (82,1),0=1.2°and a,,= 115.3 A. (a) The sample prior to
relaxation, (b) the sample after relaxation. Notice the shrinking of the AA stacked area. (c¢) The displacements of the atoms as the result

of relaxation for asample (n,m) =(17,1),0=5.7°and a,, = 24.5 A. The colour indicates size and the arrow the direction of the
displacements.
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Figure 4. Bond lengths of relaxed configurations for samples where the graphene layer is relaxed in all directions. The supercell is
shown in black. The bottom panels show the bond length along the dashed diagonal line. (a) =2.1°, (n,m) = (47,1), a,, = 66.4 A. (b)
0=1.2° (n,m)=(82,1), a,, = 115.3 A. (c) =0.46°, (n, m) = (216,1), a,, =302.6 A.
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Figure 6. Out-of-plane distance for samples where the graphene layer is relaxed in all dimensions. The bottom panels show the out-of-
plane distance along the dashed diagonalline. (a) 0 =2.1° (n,m) = (47,1), a,, = 66.4 A.(b)O=1.2°(n,m)=(82,1), a,, = 1153 A.
(c) 0=0.46° (n,m) = (216,1), a,, = 302.6 A.




Twisted bilayer graphene

1
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Figure 8. Out-of-plane distance for double layer graphene. The bottom four panels show zalong the dashed line in the top figure. The
dashed lines show the z for graphene on graphite as in figure 6.

There is a modulation at small angles and some analog of “incommensurability”
(small modulations) at larger angles



Description in terms of dislocations

PHYSICAL REVIEW B 102, 085428 (2020)

Origin of the vortex displacement field in twisted bilayer graphene

Yu. N. Gornostyrev ©!

<

2 and M. 1. Katsnelson®*?

X

<

B
<

-
<
<
.

FIG. 1. The schematic representation of the dislocation network
used to describe the twist boundary. (a) Network of screw disloca-
tions. (b) Reconstructed network of dislocations. Vectors 1-3 indi-
cate the directions of dislocation lines. The moiré cell is highlighted

by a yellow tetragon.

To reproduce vortex structure one can
try three families of screw dislocations

Displacement field from individual
dislocation is given by analytic formula
(Frenkel — Kontorova model)

_ 0
uy(x) = g Z {arctan [exp ()L — l"g_ 5/2)i|

i

[ ()c —x! +5/2)“
-+ arctan exp S y

O dislocation core splitting

o 1s the shear modulus
o~ ubly * |
y 1s the stacking fault energy



Description in terms of dislocations Il
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FIG. 3. Displacement u,(r) shown as a vector field for (a) narrow and (c), (d) split dislocation cores (6 = 0.4d). and (e) for the
reconstructed dislocation network. (c¢) and (d) display screw and edge components of the displacement field, respectively, in the case of

split dislocation. (b) and (f) present the distribution of the strain energy density determined by Eq. (9) for cases (a) and (e), respectively. The
value & is equal 0.05d in cases (a)—(c) and 0.15d in cases (e) and (f). Distances along the X, ¥ axes are given in units of L/3/2, where L is

the separation between the moiré coincidence points.



Description in terms of dislocations Il
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Pseudomagnetic fields
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FIG. 5. Distribution of PMF calculated by using Eqgs. (10) and (11) for the network of narrow dislocations shown in Fig. 3(a) (left) and for
the reconstructed dislocation network shown in Fig. 3(e) (right). Distances along the X, ¥ axes are given in units of L/3/2, where L is the
separation between the moiré coincidence points.

There is an analytic formula for pseudomagnetic field, quite cumbersome but explicit

Description in terms of vortices is consistent with that in terms of dislocations

For graphene at h BN one needs to add three families of edge dislocations, due to lattice misfit




Large-scale TB simulations plus
experiment

Large-area, periodic, and tunable intrinsic
pseudo-magnetic fields in low-angle twisted

bilayer graphene NATURE COMMUNICATIONS | (2020)11:371
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Large-scale TB simulations plus
experiment
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600 (=048 B-9T 0= 0.48° " }
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Fig. 2 Pseudo-Landau levels in the deformed twisted bilayer graphene with 6 = 0.48°. a Linear fit of the equation £y o< v/N(N — 1) and the obtained
pseudo magnetic fields is about 9 T. b Calculated LDOS at AA region under the external magnetic fields, in which we can confirm the splittings of the
pseudo-Landau level due to the break of the valley degeneracy.
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AA/AB Fig. 5 The fitted pseudo-magnetic field of TBGs with different twisted
°F e 2nm—e9 . —— angles around the region of AA/AB transtion. The obtained PMFs
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s _ distributed near the AA regions with its maximum value occuring at the
AA/AB transitions, which is highly consistent with our calculated results.

P=— 1nm—:

A A A 0.98°

Position



Quasicrystals

3 2 .2

Untrelaxed moire pattern is periodic if cos f = (]2 P2 with integer p and ¢
3~ +p

6 = 3(0° incommensurate (quasicrystal) structure

Contrary to conventional 3D quasicrystals graphene quasicrystals are easily tunable!

For so large misorientation angle atomic relaxation is negligible and we are always in
incommensurate phase

Dodecagonal bilayer graphene quasicrystal and its

. npj Computational Materials (2019)5:122
approximants

Guodong Yu(®'?3, Zewen Wu(®'?, Zhen Zhan', Mikhail I. Katsnelson? and Shengjun Yuan (&'

PHYSICAL REVIEW B 102, 045113 (2020) PHYSICAL REVIEW B 102, 115123 (2020)

Pressure and electric field dependence of quasicrystalline electronic states

in 30° twisted bilayer graphene Electronic structure of 30° twisted double bilayer graphene

1.2

Guodong Yu®, Mikhail 1. Katsnelson.” and Shengjun Yuan

12,7 Guodong Yu®,> Zewen Wu®,' Zhen Zhan,' Mikhail I. Katsnelson,” and Shengjun Yuan®!>"



Quasicrys

tals Il

Using approximants to calculate electronic structure;
elementary cell is huge but doable via tight-binding propagation

method
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Bright features appear only far enough from
the conical point




Quasicrystals Il
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Conclusions

- Atomic relaxation 1s very important for small enough misorientation angles

- Twisted VAW heterostructures are model systems to study physics of

commensurability and incommensurability in condensed matter

- Description in terms of vortices, dislocations and other topological effects may be

very suitable

- Second-harmonic generation can be a sensitive experimental tool to study commensurate-
incommensurate transition



One more story: Fermi condensate

From Standard Model of particle physics to room-temperature
superconductivity
G.E. Volovik
February 11, 2021

e . - . woek ending
PRL 112, 070403 (2014) PHYSICAL REVIEW LETTERS 21 FEBRUARY 2014

£
Fermi Condensation Near van Hove Singularities Within the Hubbard Model on the
Triangular Lattice

Dmitry Yudin,' Daniel Hirschmeier,® Hartmut Hafermann,” Olle Eriksson,'
Alexander 1. Lichtenstein.® and Mikhail L Katsnelson™

L)

‘ 0.4
FIG. 4 (color online). Broadened Fermi surface within £0.1

electrons for U/r=8 and T/r=0.1. The lower left sextant € o
shows the noninteracting result.

IMucema 8 HITD, tom 59, ewm.ll, crp.798 - 802, ©1994 r. 10 mons

ON FERMI CONDENSATE: NEAR THE SADDLE POINT AND
WITHIN THE VORTEX CORE

G.E. Volovik




Second story: Van Hove scenario and flat band

formation
Example: Van Hove filling and optimal doping in high-T¢

superconductors (also — pseudogap, etc.)
Irkhin, Katanin & MIK, PRB 64, 165107 (2001); PRL 89, 076401 (2002)

We consider 7-1" Hubbard model on the square lattice: s / * K Near VHS:
2 VH points [-_[ o A 2 —2 2 2
+ ey = —21(sin” @k | —cos” ¢k
H=, E1C 1oCro T U, nin;| ( / k ( PR ¢ J)
k i

with \ / 8‘3221‘((:082 goki— sin’ :,ok_;“),)

2¢=cos 1(2t'/1)

ex=—2t(cosky+cosk,)+41' cosk,cosk,+41"—p,
(2)

When Fermi energy coincides with VHS: relevant vertices are divergent,
opportunity of non-Fermi- liquid behavior (Dzialoshinskii, 1987)



Van Hove scenario and flat band
formation Il

A /;\\ Particle-hole channel
© R fle) —flena) z =1/\J1—R?
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A A zo=In[(1+1—R?)/R]

/4_\ XAB :E f(sé)_f(sf{;+q)
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A B

IO 1 i
-— min(zots 2t ErE.). &+ log divergent

Particle-particle channel
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Van Hove scenario and flat band
formation Ill

Parquet summation of divergent diagrams (Irkhin, Katanin, MIK 2001)

0.15

Competing channels of instabilities
(FM, AFM, d-wave pairing) — mutual 010 -
suppression!

gy = Ui(4n2t)

AF
0.05

Phase diagram at Van Hove filling

0.00

Almost exact solution for small enough U

Objection (P. W. Anderson): who cares on the theory working in
one point?



Van Hove scenario and flat band
formation IV

VOLUME 89, NUMBER 7 PHYSICAL REVIEW LETTERS 12 AUGUST 2002

Robustness of the Van Hove Scenario for High-T, Superconductors Per turb atlve RG tr €atm€ﬁt
V. Yu. Irkhin, A. A, Katanin, and M. . Katsnelson
Damping 1s divergent, NFLI!!!
Difference with “Fermi
condensation” phenomenology,

If one take into account
only renormalization of dispersion

. /(2 Khodel & Shaginyan (1990)
0-2) 50(s) k2 ClIn(At/|e]) c ¢21n2
E) = s == —_—
° P P el 1 + Cin2(Ar/le) P sin*2¢
-O.4>Rx/ﬁ k ,
w5 0 05 i i(n) = Arexp(—const/|n — nyyl'/?)

FIG. 1. Quasiparticle dispersion for ¢/t = —0.3 and U = 4¢
from RG approach. The values of the chemical potential are i =
0, —0.2¢, —0.4¢ (from top to bottom).

Looks like flat band formation Pinning Fermi energy to VHS



Triangular Lattice- VHS

week ending

PRL 112, 070403 (2014) PHYSICAL REVIEW LETTERS 21 FEBRUARY 2014

£

Fermi Condensation Near van Hove Singularities Within the Hubbard Model on the
Triangular Lattice

Dmitry Yudin,1 Daniel Hirschmeier,2 Hartmut H'clfermann,3 Olle Eriksson,1

Alexander 1. Lichtenstein,” and Mikhail I. Katsnelson™®’
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Van Hove sinqularity at filling n=2/3



Dual fermion approach

Spectral Function

U/t =8and T/t = 0.05

The effect survives at relatively
high temperatures, may be suitable
for the observation in optical lattices

Microscopic realization of the

Br M K fermion condensate
— 0.6
Ladder DF approx.
1
N(k)
=< 0.5
2= 0.5 | 1
[
U=8§
0.4
U:O J tight-binding — FIG. 4 (color online). Broadened Fermi surface within 0.1
0 U=8t electrons for U/t =8 and T/t = 0.1. The lower left sextant

r M K r shows the noninteracting result.



Experiment?!

PHYSICAL REVIEW B 100, 121407(R) (2019)

Rapid Communications

Introducing strong correlation effects into graphene by gadolinium intercalation

S.Link,' S. Forti,":” A. Stohr." K. Kiister," M. Rosner,”"* D. Hirschmeier,” C. Chen.” J. Avila," M. C. Asensio,”
A. A. Zakharov,®* T. O. Wehling.” A. L. Lichtenstein,” M. L. Katsnelson,* and U. Starke'-!

ARPES evidence of band flattening?!

2
0<
|2 Theoretical spectral density (black)
RIS T (b) 2.0

k(A"

FIG. 1. ARPES on Gd-intercalated ZLG: (a) Illustration of
graphene’s 7 bands. (b) Side view model of the intercalation system.
(c) Two concatenated ARPES measurements cutting from K over M
to K’ together with a band modeled with NN-TB (red trace). The left
part (below 2.1 A~") was taken with 30 eV and the right part (above
2.1 A=") with 100 eV photon energy. (d) Symmetrized FS taken with -2.0
90 eV photon energy together with its experimental fit (red and green
lines). The black hexagon represents graphene’s first BZ.
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