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On the scaling properties of (2+1) directed polymers
in the high temperature limit

(EPL 134, 40003 (2021))

The model

The elastic string φ(τ) is described by the two-dimensional vector
(
φx(τ), φy(τ)

)

The Hamiltonian:

H[φ(τ);V ] =

∫ t

0

dτ

{
1

2

[
∂τφ(τ)

]2
+ V [φ(τ), τ ]

}
; (1)

The disorder potential V [φ, τ ] is Gaussian distributed:

V (φ, τ)V (φ′, τ ′) = u δ(τ − τ ′)U(φ− φ′) (2)

U(φ) =
1

2π ε2
exp
{
−φ2

2ε2

}
(3)

The partition function:

Z(r, t) =

∫ φ(t)=r

φ(0)=0

Dφ(τ) exp
{
−βH[φ(τ), V ]

}
= exp

{
−βF (r, t)

}
(4)

where F (r, t) is the free energy which is a random quantity
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• In one-dimensional model the fluctuations of the free energy are de-

scribed by the Tracy-Widom (TW) distribution and their typical value

scale with time as t1/3 at all temperatures.

• In the considered (2+1) model due to extensive numerical simulations

it is convincingly established that at the zero-temperature the free energy

fluctuations scale as tθ with the scaling exponent θ ' 0.241.

• Here I would like to propose an approximate method which in the high
temperature limit allows to derive the left tail asymptotics of the free
energy distribution function. Assuming that this distribution function is
defined by the only energy scale one finds that the scaling exponent θ =
1/2, which implies that θ is non-universal being temperature dependent.
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The free energy probability distribution function can be studied
in terms of the integer moments of the partition function:

ZN ≡ Z(N, t) =

∫ +∞

−∞
dF P (F ) exp

{
−βNF

}
(5)

where

Z(N, t) =
N∏
a=1

∫ φa(t)=0

φa(0)=0

Dφa(τ) exp
{
−βHN [φ1(τ), φ2(τ), ... ,φN(τ)]

}
(6)

is the replica partition function and

βHN =

∫ t

0

dτ

[
1

2
β

N∑
a=1

(
∂τφa(τ)

)2
− 1

2
β2 u

N∑
a,b=1

U
(
φa(τ)− φb(τ)

)]
; (7)

is the replica Hamiltonian which describes N elastic strings{
φ1(τ), φ2(τ), ... ,φN(τ)

}
with the attractive interactions U

(
φa − φb

)
.

To compute Z(N, t) one introduces the function:

Ψ(r1, r2, ... rN ; t) =
N∏
a=1

∫ φa(t)=ra

φa(0)=0

Dφa(τ) exp
{
−βHN

}
(8)

such that Z(N, t) = Ψ(r1, r2, ... rN ; t)
∣∣
ra=0

Ψ(r1, r2, ... rN ; t) is defined by the imaginary time Schrödinger equation

β
∂

∂t
Ψ =

1

2

N∑
a=1

∆aΨ +
1

2
β3u

N∑
a,b=1

U(ra − rb) Ψ (9)

The corresponding eigenvalue equation for the eigenfunctions ψ(r1, r2, ... rN), de-
fined by the relation

Ψ(r1, r2, ... rN ; t) = ψ(r1, r2, ... rN) exp
{
−t EN

}
(10)

reads:

−2β EN ψ =
N∑
a=1

∆aψ + β3u

N∑
a,b=1

U(ra − rb)ψ (11)
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• In the one-dimensional case the solution of the above equation is given by the
Bethe ansatz wave function which is valid only for U(x) = δ(x) and which is based
on the exact two-particle wave functions (N = 2) solution exhibiting finite value
energy EN=2.

• I contrast to that, in two dimensions there exists no finite two-particle solution
for U(r) = δ(r). In the limit ε → 0 (when U(r) turns into the δ-function) the
ground state energy EN=2 → −∞. In other words, in two dimensions we have to
study the system with finite size function U(r) and the value of its spatial size ε
must explicitly enter into the final results.

• Besides, in two dimensions even the ground state energy EN as well as N -particle
ground state wave function ψ(r1, r2, ... rN) are not known.

• Here we propose un approach which makes possible to estimate the replica
partition function Z(N, t) in the limit N � 1. This in turn, at least in the high-
temperature limit, allows to derive the scaling exponent of the free energy fluctua-
tions.
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Mean Field Approach

In the limit of large number of particles, N � 1, one can use the mean field
approximation, in which the N -particle wave function factorizes into the product of
N one-particle functions:

ψ(r1, r2, ... rN) '
N∏
a=1

ψ(ra) (12)

In the leading order in N−1 one gets:

∆ψ(r) − λψ(r) + κψ(r)

∫
d2r′ U0(r− r′)ψ(r′) = 0 (13)

where

λ = −4βε2

N
EN (14)

κ = 2β3uN (15)

and

U0(r) =
1

2π
exp

{
−1

2
r2
}

(16)

∫
d2r ψ(r) = 1 (17)

• Further strategy:

(1) For given values of the parameters λ and κ we have to find smooth non-negative
solution of eq.(13) such that ψ(r→∞)→ 0.

(2) Substituting this solution into the constraint (17) we can find λ as a function
of κ, which eventually gives us the dependence of the ground state energy EN on
the replica parameter N .
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The example of (1 + 1) system:

The one-dimensional version of eqs.(13)-(17) reads

ψ′′(x) − λψ(x) + κψ(x)

∫
dx′ U1(x− x′)ψ(x′) = 0 (18)

∫ +∞

−∞
dxψ(x) = 1 (19)

U1(x) =
1√
2π

exp

{
−1

2
x2
}

(20)

Redefining

ψ(x) =
λ

κ
φ
(√

λx) (21)

we get

φ′′(z) − φ(z) + φ(z)

∫
dz′ Uλ(z − z′)φ(z′) = 0 (22)

√
λ

κ

∫ +∞

−∞
dz φ(z) = 1 (23)

Uλ(z) =
1√
2πλ

exp

{
− 1

2λ
x2
}

(24)

According to eq.(23),

λ =

(∫ +∞

−∞
dz φ(z)

)−2
κ2 (25)

In the high temperature limit both κ ∝ β3uN → 0 and λ→ 0, so that

lim
β→0

Uλ(z) → δ(z) (26)

and eq.(22) reduces to

φ′′(z) − φ(z) + φ2(z) = 0 (27)
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This equation has an instanton-like solution with φ(0) ' 1.50 , φ′(0) = 0 and
φ(z →∞)→ 0:
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FIG. 1: Instanton solution of eq.(27)

According to eqs.(14), (15) and (25) we find

EN ' −
1

36
β5 u2N 3 ∝ −N 3 (28)

This result, except for the numerical prefactor, perfectly fits with the exact value of
ground state energy − 1

24β
5 u2N 3 of the one-dimensional N -particle boson system

and correspondingly provide the well known value of the free energy scaling exponent
θ = 1/3.



8

(2+1) directed polymers

For the radially symmetric wave function ψ(r) = ψ(|r|) ≡ ψ(r). eqs. (13)-(17)
take the form

ψ′′(r) +
1

r
ψ′(r) − λψ(r) + κψ(r)

∫
d2r′ U0(|r− r′|)ψ(r′) = 0 (29)

2π

∫ ∞
0

dr r ψ(r) = 1 (30)

Redefining

ψ(r) =
λ

κ
φ
(√

λ r) (31)

we get

φ′′(z) +
1

z
φ′(z) − φ(z) + φ(z)

∫
d2z′ Uλ(|z− z′|)φ(z′) = 0 (32)

2π

∫ +∞

0

dz z φ(z) = κ (33)

Uλ(|z|) =
1

2πλ
exp

{
− 1

2λ
|z|2
}

(34)

In the high temperature limit

lim
λ→0

Uλ(z) = δ(z) (35)

eq.(32) reduces to

φ′′(z) +
1

z
φ′(z) − φ(z) + φ2(z) = 0 (36)
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This equation has an instanton-like solution with φ(0) ' 2.39 , φ′(0) = 0 and
φ(z →∞)→ 0:
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FIG. 2: Instanton solution of eq.(36)

Substituting this solution into eq.(33) we find

κ(λ = 0) ≡ κ0 ' 31.00 (37)

At non-zero λ� 1, numerical solution of eqs.(32)-(33) demonstrate perfect linear
dependence:
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FIG. 3: Dependence of λ on (κ− κ0)

λ(κ) = γ (κ− κ0) (38)

with

γ ' 0.050 (39)
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Free energy scaling

For the ground state energy we find

EN ' −
γ

4βε2
N
(
2β3uN − κ0

)
(40)

which is valid for

N > N∗ ≡
κ0

2β3u
� 1 (41)

For the replica partition function we obtain

Z(N, t) ∼ exp

{
γ

4βε2
N
(
2β3uN − κ0

)
t

}
(42)

Correspondingly, at large N we have

∫ +∞

−∞
dF P (F ) exp

{
−βNF

}
∼ exp

{
γu

2ε2
(βN)2 t − γκ0

4β2ε2
βN t

}
(43)

The total free energy F splits into two independent parts: F = F + F̃ , where
F = γκ0t/(4β

2ε2) is an extensive non-random (selfaveraging) part while F̃ is the
fluctuating contribution described by a distribution function P̃

(
F̃
)

which is defined
by the relation

∫ +∞

−∞
dF̃ P̃

(
F̃
)

exp
{
−βNF̃

}
∼ exp

{
γu

2ε2
t (βN)2

}
(44)

As eq.(44) is valid only for N > N∗ � 1, the above equation gives us only the
left tail of this distribution:

P̃
(
F̃ → −∞

)
∼ exp

{
− ε2

2γ u t
F̃ 2

}
(45)

Thus, the typical value of the free energy fluctuations scale as

F̃ ∼
√
γ u

ε
t1/2 (46)
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Conclusions:

• The fact that at high temperatures the scaling exponent (θ = 1/2) is differ-
ent from the one at the zero temperature (θ ' 0.241) indicates that in two
dimensions this scaling exponent must be temperature dependent.

• In the high temperature limit the prefactor in time scaling of the free energy
fluctuations ∼

√
u
ε t

1/2 is defined by the parameters of the disorder potential and
it is temperature independent (unlike (1+1) case, where it is proportional to
β2/3).

• The results presented above are based on two crucial assumptions:

(1) pure heuristic mean-field ansatz for the N -particle wave function,
ψ(r1, r2, ... rN) → ψ(r1)ψ(r2) ... ψ(rN);

(2) the hypothesis that the entire free energy probability distribution function
P̃ (F̃ ) can be reduced to a universal function.


